2.2 Tight-binding

Features and Capabilities

  • Bandstructure, spectra functions, Fermi surface
  • Green’s functions (GF)
  • Spin-orbit coupling (SOC)
  • Perturbation theory treatment of SOC using GF
  • Pairwise exchange coupling and magnetocrystalline anisotropy using linear response
  • Orthogonal and non-orthogonal basis

Brief descriptions

  • Spectral function
    To better illustrate the \(k_z\) dependence of band structures in bulk layered materials, we project all bands onto the surface BZ by integrating the \({\bf k}\)-dependent spectral function, over \(k_z\), \[\begin{equation} I({\bf k}_{\parallel},\omega) =\int_{0}^{1} \mathrm{d}k_z\ \sum_i \delta[\omega-E_i({\bf k}_{\parallel}, k_z)]. \label{eq:DOS_projected} \end{equation}\] Here, \(k_z\) is integrated from 0 to 1 r.l.u., while \({\bf k}_\parallel\) is in the basal plane.

  • Pairwise magnetocrystalline anisotorpy

\[\begin{equation} K =\sum_{ij,\sigma\sigma'} \widetilde{K}_{ij}^{\sigma\sigma'} \label{eq:kprime} \end{equation}\]

\[\begin{equation} \widetilde{K}_{ij}^{\sigma\sigma'} = -\frac{2}{\pi}\operatorname{Im}\int_{-\infty}^{\epsilon_\text{F}}\,\mathrm{d}\epsilon\int\,\mathrm{d}{\bf k} \mathop{\mathrm{Tr}}\left[ G_{ij}^{\sigma}({\bf k},\epsilon)U_{j}^{\sigma\sigma'}G_{ji}^{\sigma'}({\bf k},\epsilon)A_{i}^{\sigma^\prime\sigma}\right]. \label{eq:k2} \end{equation}\]

Here, \(U\) and \(V\) are the isotropic and anisotropic parts of the spin-orbit-coupling potential: \[\begin{align} \begin{split} 2U &= V(\hat{\bf n}_{110})+V(\hat{\bf n}_{001}) \\ 2A &= V(\hat{\bf n}_{110})-V(\hat{\bf n}_{001}). \end{split} \end{align}\]

  1. Others

Relevant publications:

(Lee et al. 2022) (Timmons et al. 2020) (Ke 2019)

Publications

Ke, Liqin. 2019. “Intersublattice Magnetocrystalline Anisotropy Using a Realistic Tight-Binding Method Based on Maximally Localized Wannier Functions.” Phys. Rev. B 99: 054418. https://doi.org/10.1103/PhysRevB.99.054418.
Lee, Y., R. Skomski, X. Wang, P. P. Orth, A. K. Pathak, B. N. Harmon, R. J. McQueeney, I. I. Mazin, and Liqin Ke. 2022. Interplay between magnetism and band topology in Kagome magnets \(R\)Mn\(_6\)Sn\(_6\).” arXiv 2201 (May): 11265.
Timmons, E. I., S. Teknowijoyo, M. Ko ńczykowski, O. Cavani, M. A. Tanatar, Sunil Ghimire, Kyuil Cho, et al. 2020. Electron irradiation effects on superconductivity in \({\mathrm{PdTe}}_{2}\): An application of a generalized Anderson theorem.” Phys. Rev. Research 2 (May): 023140. https://doi.org/10.1103/PhysRevResearch.2.023140.